Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

9-(4-Bromophenyl)-3,3,7-trimethyl-3,4-dihydro-acridin-1(2H)-one

Shu-Jiang Tu, ${ }^{\text {a }}$ Bo Jiang, ${ }^{\text {a }}$ Xiang Zou ${ }^{\text {b }}$ and Tuan-Jie Li ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Lianyungang Teacher's College, Lianyungang 222000, People's Republic of China

Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.032$
$w R$ factor $=0.086$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

The title compound, $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}$, was synthesized by the reaction of 4-bromobenzaldehyde with p-toluidine and 5,5-dimethylcyclohexane-1,3-dione in glycol under microwave irradition. The terminal saturated six-membered ring of the dihydroacridine moiety has a twist-boat conformation. The crystal packing is mainly stabilized by van der Waals forces.

Comment

Acridine and its derivatives inhibit HIV-1 reverse transcriptase by intercalating the template-primer hybrid (Cellai et al., 1994). Such compounds are known as antimicrobial (AlAshmawi et al., 1994) and antitumour agents (Wang et al., 1993). They are also used for the treatment of urinary incontinence (Ohnmacht et al., 1993). In a continuation of our structural study of acridinedione derivatives (Guo et al., 2004; Tu et al., 2004), we report here the crystal structure of the title compound, (I) (Fig. 1).

(I)

The bond lengths and angles in (I) are within normal ranges (Xin et al., 1980; Table 1). The six-membered ring C1-C4/C11/ C12 has a twist-boat conformation, with atoms C2 and C3 deviating from the $\mathrm{C} 1 / \mathrm{C} 4 / \mathrm{C} 11 / \mathrm{C} 12$ mean plane by 0.203 and $-0.526 \AA$, respectively. The pyridine ring makes dihedral angles of 85.67 (8) and $1.36(15)^{\circ}$, respectively, with the C17C22 benzene ring and the C1/C4/C11/C12 plane. The crystal packing (Fig. 2) is mainly stabilized by van der Waals forces.

Experimental

The title compound, (I), was prepared by the reaction of 4-bromobenzaldehyde (1 mmol) with p-toluidine $(1 \mathrm{mmol})$ and $5,5-$ dimethylcyclohexane-1,3-dione (1 mmol) in glycol (1 ml) under microwave irradiation (yield 93%; m.p. 513-514 K). Single crystals of (I) suitable for X-ray diffraction were obtained from an ethanol solution by slow evaporation.

Received 1 June 2005 Accepted 11 July 2005 Online 16 July 2005

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrNO}$
$M_{r}=394.30$
Triclinic, $P \overline{1}$
$a=10.045$ (2) \AA
$b=10.247$ (2) A
$c=11.261$ (2) \AA
$\alpha=111.134$ (2) ${ }^{\circ}$
$\beta=112.428$ (3) ${ }^{\circ}$
$\gamma=99.831$ (3) ${ }^{\circ}$
$V=933.3(4) \AA^{3}$

Data collection

Siemens SMART CCD area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.450, T_{\text {max }}=0.654$
4925 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.086$
$S=1.03$
3255 reflections
226 parameters
H -atom parameters constrained

$Z=2$

$D_{x}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2153
reflections
$\theta=2.2-28.2^{\circ}$
$\mu=2.21 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, light yellow
$0.43 \times 0.35 \times 0.21 \mathrm{~mm}$

3255 independent reflections 2609 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-6 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0469 P)^{2}\right. \\
& \quad+0.1846 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
View of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The crystal packing in (I), viewed approximately along the b axis.

References

Al-Ashmawi, M. I., Ei-Sadek, M. A., El-Bermawy, M. A., Mohamed, A. K. \& Al-Sabbagh, O. L. (1994). Zagzig J. Pharm. Sci. 3, 144-150.
Cellai, L., Di Filippo, P., Iannelli, M. A., Antonini, I., Martelli, S., Benedetto, A., Di Caro, A. \& Cholody, W. M. (1994). Pharm. Pharmacol. Lett. 3, 198201.

Guo, C., Tu, S.-J., Li, T.-J. \& Zhu, S.-L. (2004). Acta Cryst. E60, o2035-o2037. Ohnmacht, C. J. (1993). Eur. Patent No. 539153.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

organic papers

Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tu, S. J., Zhang, X. J. \& Xu, J. N. (2004). Acta Cryst. E60, o2328o2330.
Wang, J., Han, G., Yin, R. \& Jiang, G. (1993). Gaodeng Xuexiao Huaxue Xиebao, 14, 806-808. (In Chinese.)
Xin, Q.-Y., Xu, R.-Q. \& Zhou, Z. (1980). Basic Organic Chemistry, pp. 62-63. Beijing: Chinese High Education Press. (In Chinese.)

